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A two-dimensional fluid, stirred at high wave numbers and damped by both viscosity and linear friction, is
modeled by a statistical field theory. The fluid’s long-distance behavior is studied using renormalization-group
�RG� methods, as begun by Forster, Nelson, and Stephen �Phys. Rev. A 16, 732 �1977��. With friction, which
dissipates energy at low wave numbers, one expects a stationary inverse energy cascade for strong enough
stirring. While such developed turbulence is beyond the quantitative reach of perturbation theory, a combina-
tion of exact and perturbative results suggests a coherent picture of the inverse cascade. The zero-friction
fluctuation-dissipation theorem �FDT� is derived from a generalized time-reversal symmetry and implies zero
anomalous dimension for the velocity even when friction is present. Thus the Kolmogorov scaling of the
inverse cascade cannot be explained by any RG fixed point. The � function for the dimensionless coupling ĝ
is computed through two loops; the ĝ3 term is positive, as already known, but the ĝ5 term is negative. An ideal
cascade requires a linear � function for large ĝ, consistent with a Padé approximant to the Borel transform. The
conjecture that the Kolmogorov spectrum arises from an RG flow through large ĝ is compatible with other
results, but the accurate k−5/3 scaling is not explained and the Kolmogorov constant is not estimated. The lack
of scale invariance should produce intermittency in high-order structure functions, as observed in some but not
all numerical simulations of the inverse cascade. When analogous RG methods are applied to the one-
dimensional Burgers equation using an FDT-preserving dimensional continuation, equipartition is obtained
instead of a cascade—in agreement with simulations.
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I. INTRODUCTION

The cascade of energy to low wave numbers in two-
dimensional turbulence �1�, more than other turbulence prob-
lems, is suited to the standard methods of statistical field
theory and the renormalization group �RG�. These methods
�2�, originating in quantum field theory, show that arbitrary
short-distance interactions lead to long-distance behavior de-
scribed by a local, renormalizable action—an effective field
theory. Correlation functions computed from this action con-
tain ultraviolet �UV� divergences that can be eliminated by
redefining the parameters and fields. The divergences leave
their mark, however, in the dependence on the renormaliza-
tion scale and the resulting anomalous scaling laws.

The classic application of statistical field theory is to criti-
cal phenomena �second-order phase transitions� in con-
densed matter �2�. The infrared �IR� scale invariance of cor-
relation functions at the transition temperature is explained
by a fixed point of the RG flow. The inverse energy cascade
of two-dimensional turbulence is likewise believed to be
nearly scale invariant, and one might suspect that a similar
fixed point is responsible. We will see, however, that no fixed
point can reproduce the observed k−5/3 energy spectrum.
Rather, we will argue that the inverse cascade arises from a
nontrivial RG flow and thus is not expected to be completely
scale invariant.

In the study of turbulence, a deviation from scale invari-
ance �a dependence of dimensionless physical quantities on

scale� is referred to as intermittency �3�. While intermittency
is recognized as a property of the three-dimensional direct
cascade of energy, its existence in the two-dimensional in-
verse cascade is unsettled. For a nonstationary inverse cas-
cade, in which energy is not dissipated but progresses to
ever-lower wave numbers, intermittency is not observed in
numerical simulations �4,5�; a theoretical explanation has
been given �6�. In this paper we deal solely with the station-
ary regime, where an inverse cascade requires a low-wave-
number energy sink. With few exceptions, simulations of
such a cascade confirm the k−5/3 energy spectrum initially
predicted �1� on the basis of scale invariance. But one set of
simulations �7� finds strong intermittency in fourth- and
higher-order velocity correlations. Other simulations �8� and
experiments �9�, though, find no significant intermittency.
The various studies differ mainly in the precise form of the
dissipation terms. The evidence suggests that intermittency
in the stationary inverse cascade, permitted by our theory, is
at least possibly realized.

It is our restricted focus on the inverse cascade that allows
us to work with a purely local field theory. The random force
that stirs the fluid is correlated over a limited range and is
effectively local in a long-distance description. As with the
RG treatment of quantum fields and condensed matter, we
expect all short-distance details to become irrelevant except
as they are manifested in local, renormalizable couplings.
The two-dimensional direct cascade of enstrophy to high
wave numbers �1� thus falls outside our scope. A previous
RG analysis of two-dimensional turbulence �10� is formally
similar to ours, but it follows three-dimensional studies by
adopting the long-range force correlations necessary for a
direct cascade; even its derivation of the inverse cascade re-
lies on nonlocal forcing. Here we apply RG methods in the
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familiar domain of local field theory, which should allow a
physical treatment of the inverse cascade. The explanation of
the direct enstrophy cascade may rest on entirely different
foundations, such as conformal invariance �11�.

The work most closely aligned with our theoretical ap-
proach is due to Forster, Nelson, and Stephen �FNS� �12�. At
the technical level, our contribution is to add linear friction
to FNS model A in d=2 and compute the RG flow to the next
order of perturbation theory, two loops. The inclusion of fric-
tion, which dissipates energy at low wave numbers, makes
our theory capable in principle of describing the inverse cas-
cade and its k−5/3 spectrum—unlike FNS model A, which
gives a k1 spectrum corresponding to energy equipartition in
d=2. We also note a difference in our viewpoint from that of
FNS and others �10,13,14� who apply RG methods to turbu-
lence by analogy with critical phenomena. These authors
seek a controlled IR-stable fixed point by starting with a
logarithmically divergent field theory and then decreasing
the dimension of space or the exponent of the stirring-force
correlation by �. This adds to the � function a negative linear
term proportional to �. With the usual positive one-loop term,
there exists an IR-stable fixed point at a coupling that goes to
zero with �; the fixed-point theory can then be expanded in �
instead of the original coupling. Like FNS, we work in d
=2−� to regulate UV divergences, but we ultimately take �
=0, so that the fixed point is trivial. Our inverse-cascade
model lies not at a fixed point but in the region of large
dimensionless coupling.

Naturally the use of perturbation theory is questionable
for strong coupling. Our perturbative results will have direct
quantitative application only to the extreme IR limit con-
trolled by the trivial fixed point, which is of some interest in
itself. Nevertheless, we will make reasonable conjectures
about the theory’s strong-coupling behavior that are consis-
tent with the inverse cascade, bearing in mind the dangers of
the nonperturbative regime. Besides the concern with the nu-
merical accuracy of extrapolations, there are fundamental
difficulties at strong coupling. The anomalous dimensions of
operators may be large, and the relevance of terms in the
action may differ from the weak-coupling case. Furthermore,
at strong coupling, there is no simple relation between the
couplings in different renormalization schemes, such as the
Wilsonian cutoff �useful for physical interpretation� and
minimal subtraction �convenient for systematic calculation�.
We may hope that these subtleties do not affect the main
conclusions even at very strong coupling. At least we know
that the theory of critical phenomena in d=4−� is extrapo-
lated to �=1 �moderate coupling� with acceptable results.

In Sec. II we describe the basis of our theory and our
method of calculation, confirming the one-loop RG flow of
FNS �12�. In Sec. III we present symmetries and other prop-
erties of the theory that do not involve a dubious extrapola-
tion to strong coupling. In Sec. IV we compute the two-loop
term of the � function. In Sec. V we relate the plausible
strong-coupling behavior of the theory to the phenomenol-
ogy of the inverse cascade. In Sec. VI, as a test of our meth-
ods, we consider a rather different model, the UV-stirred
one-dimensional Burgers equation. A summary and discus-
sion are presented in Sec. VII.

II. FRAMEWORK

A. Path integral for the Navier-Stokes equation

The Navier-Stokes equation for the velocity field v j of an
incompressible two-dimensional fluid is

v̇ j + vk�kv j + � jP − ��2v j + �v j = f j , �1�

where P is the pressure divided by the density, � is the ki-
nematic viscosity, � is the friction coefficient, and f j is the
force per unit mass. The incompressibility condition �ivi
=0 allows the velocity to be expressed as

vi = �ij� j� , �2�

where � is a pseudoscalar field called the stream function
and �ij is the alternating tensor, which in two dimensions
satisfies

�ij�kl = �ik� jl − �il� jk. �3�

Upon writing Eq. �1� in terms of � and applying the operator
�ij�i, we obtain �10�

− �2�̇ − �ij�i�
2�� j� + ��4� − ��2� = � . �4�

Here

� = � � f , �5�

with the notation

a � b � �ijaibj . �6�

In the real three-dimensional world, Eq. �1� is a good
approximation for a thin fluid film provided either �a� the
boundary surface�s� and the coordinate system are rotating
rapidly about a perpendicular axis or �b� the fluid is conduct-
ing and subject to a strong perpendicular magnetic field �15�.
In either case, boundary-layer effects produce a linear fric-
tion parametrized by �, which has units of frequency.

For convenience, our field-theory calculations will use the
method of dimensional regularization �16�, based on continu-
ation to a noninteger spatial dimension d=2−�. Because in
the end we are concerned only with d=2, we adopt a formal
continuation of the Navier-Stokes equation that preserves its
two-dimensional features. For general d, we retain the
stream-function representation by choosing a “physical”
two-dimensional subspace that contains the tensor �ij and the
external wave vectors of correlation functions. Denoting by
	ij the projector onto the physical subspace, we now have

�ij�kl = 	ik	 jl − 	il	 jk. �7�

We take Eq. �4� as the equation of motion for �, with �2

��k�k interpreted as the d-dimensional Laplacian. In this
way we preserve �for �=�=�=0� the formal conservation of
the energy and enstrophy,

E = 1
2 � ddx�i��i� , �8�


 = 1
2 � ddx�2��2� . �9�
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We assume that the fluid is stirred by a Gaussian random
force that is uncorrelated in time �12�, with

�f i��,k�f j���,k��� = �2��d+1��� + �����k + k��

� ��ij − kikj/k
2�D�k2� , �10�

so that � is also Gaussian with

����,k�����,k��� = �2��d+1��� + �����k + k��k2D�k2� .

�11�

A classical system with random forcing can be treated in the
formalism of quantum field theory �17�, including the path-
integral representation �18–20�. Upon introduction of a pseu-
doscalar field p conjugate to �, correlation functions of � are
given by the path integral

�F���� � D� Dp F���e−S, �12�

with the action

S =� dt ddx� 1
2 �− �2p�D�− �2�p

+ ip�− �2�̇ − �ij�i�
2�� j� + ��4� − ��2���

=� dt ddx� 1
2 �− �2p�D�− �2�p + i�p�4� − i�p�2�

− ip�2�̇ − i�ij�i�kp� j��k�� , �13�

where we have integrated the p�� term by parts. The Jaco-
bian determinant from changing variables from � to � is an
unimportant constant by virtue of causality �20�.

B. Relevance of couplings

In the field theory based on the action �13�, the long-
distance behavior is governed by just the renormalizable
terms—those with coefficients whose scaling dimensions
with respect to wave number in d=2 are zero �marginal� or
positive �relevant� �2�. We assign scaling dimensions
d� ,dp ,dt to the fields � and p and to the time t by requiring
that the highest-derivative quadratic terms in the action have
dimensionless coefficients in d=2, since these terms control
the asymptotic behavior of propagators and thus the UV con-
vergence or divergence of diagrams. Because of the addi-
tional derivatives, the viscous term i�p�4� is clearly less
relevant than the friction term −i�p�2�. In fact, it is com-
monly said that viscosity is irrelevant to the inverse cascade,
but we now show that this cannot be taken in the technical
sense. If the viscous term is ignored, then the p�2� and

p�2�̇ terms have dimensionless coefficients only if dt=0 and
d�=−dp. For a nontrivial theory, the p�� term must be renor-
malizable, giving 2�4+dp+2d�=4−dp. With dp�2, there
exists no local renormalizable forcing term quadratic in p.

Let us therefore retain the viscous term and recompute the

scaling dimensions. The p�4� and p�2�̇ terms possess di-
mensionless coefficients only if dt=−2 and d�=−dp. Renor-
malizability of the p�� term now gives 4�4+dp+2d�=4

−dp, so that dp�0. It remains to specify the forcing term. We
assume that the external forcing is confined to a band of high
wave numbers, as in model C of FNS �12�. The effective
forcing at low wave numbers is generated by renormaliza-
tion; because the interaction in Eq. �13� has two spatial de-
rivatives acting on p, at least two derivatives must accom-
pany each factor of p in any term so generated. The only
renormalizable forcing term is then 1

2D0�
2p�2p, whose co-

efficient is dimensionless for dp=d�=0. This effective forc-
ing has D�k2�=D0k2, as in model A of FNS. All terms in the
action are now marginal, except for the friction term, which
is relevant �coefficient of dimension 2�. The only other renor-
malizable terms that could be generated are ones containing
only �, but these are not generated �see Sec. II C�.

Next we label the fields and the time in Eq. �13� with the
subscript “phys” and introduce rescaled variables to simplify
the action. Tentatively seeking to set all coefficients other
than forcing and friction equal to 1, we take

�phys = ��, pphys = �−1p, tphys = �−1t . �14�

The result is

S =� dt ddx� 1
2g2�2p�2p + ip�4� − i�−1�p�2� − ip�2�̇

− i�ij�i�kp� j��k�� , �15�

where

g = D0
1/2�−3/2. �16�

We adopt, however, a different rescaling that will be particu-
larly convenient in Sec. III B:

�phys = g��, pphys = �g��−1p, tphys = �g��−1t . �17�

The final form of the action is then

S =� dt ddx� 1
2g−1�2p�2p + ig−1p�4� − i�p�2� − ip�2�̇

− i�ij�i�kp� j��k�� , �18�

where

� = �g��−1� = D0
−1/2�1/2� . �19�

For general d=2−�, the scaling dimensions in Eq. �18� are

d� = dp = −
1

2
�, dt = − 2 +

1

2
� ,

dg = +
1

2
�, d� = + 2 −

1

2
� . �20�

In two dimensions, g is a dimensionless coupling and � is
analogous to a mass parameter in quantum field theory.

C. Feynman rules

Correlation functions can be calculated for the action �18�
using Feynman diagrams whose lines carry both frequencies
and wave vectors. We represent the fields � and p by wiggly
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and plain lines, respectively. The ingredients of the diagrams,
shown in Fig. 1, are the propagators �p��0, ����0, obtained
from the quadratic terms in the action, and the vertex factor
−�0

��p, obtained from the cubic term. We label these quanti-
ties with the subscript 0 because they are the tree-level con-
tributions to the exact two-point correlation functions �p��,
���� and the exact three-point one-particle-irreducible �1PI�
function −���p.

The remaining contributions arise from diagrams contain-
ing loops. For these diagrams, we integrate over each loop
frequency and wave vector according to

� d�

2�

ddk

�2��d . �21�

Because the integrand is a rational function of the frequen-
cies, the � integrations can easily be performed by the con-
tour method before integrating over wave vectors. This con-
tour integration shows that a 1PI diagram �or subdiagram�
vanishes if all its external lines are � �20�, since there is a
closed loop of �p��0 propagators and the integrand is an
analytic function of the loop frequency in the upper half
plane.

Unlike many field theories in a low number of spatial
dimensions, ours does not contain IR divergences even for
�=0. This is because, after integration over frequencies,
internal-line propagators scale as k−2, but at least one further
factor of the wave vector arises from each of the two vertices
that a line connects. Hence the integrand does not diverge as
the wave vector of any internal line goes to zero. The fre-
quencies and wave vectors of the external lines act as an IR
cutoff. For simplicity, our calculations will adopt another IR
cutoff by assuming that ��0; then 1PI diagrams are analytic
at zero external frequencies and wave vectors.

D. One-loop renormalization

The coefficients of the quadratic terms in the action �with
frequency � and wave vector q� are

�0
�p = q2�� + i� + ig−1q2� , �22�

�0
pp = g−1q4. �23�

These are corrected at one loop by the two-point 1PI dia-
grams in Fig. 2. Because of the external wave vectors in the
vertex factors, the diagrams are O�q4�, and so we can set �

=0. We now demonstrate the computation of the −�1
�p dia-

gram, to show the basic methods to be used for two-loop
diagrams in Sec. IV.

The frequency integral of the propagators is

I � �
−�

� d�

2�
�g−1k−2�� + i� + ig−1k2�−1

� �� + i� + ig−1	k − q	2�−1�� − i� − ig−1	k − q	2�−1�

=
− ig/4k2

�g� + k2 − k · q + 1
2q2��g� + k2 − 2k · q + q2�

, �24�

obtained conveniently by closing the contour in the upper
half plane and picking up one pole. We next multiply by the
vertex factors and expand to O�q4�:

i�k2 − 2k · q��k � q�i�2k · q − q2��k � q�I

= �k2 − 2k · q��q2 − 2k · q��k

2q2 − �k · q�2�I

→
6ig�k · q�2�k


2q2 − �k · q�2�
4�g� + k2�3

−
ig�k2q2 + 4�k · q�2��k


2q2 − �k · q�2�
4k2�g� + k2�2 , �25�

where k

2�	ijkikj is the squared projection of k onto the

physical subspace and we infer from Eq. �7� that

�k � q�2 = k

2q2 − �k · q�2. �26�

We omit O�q3� terms in Eq. �25� because they will now
disappear when we average over directions of k.

With the d-dimensional isotropization formulas

kikj → k2�ij

d
, kikjkkkl → k4�ij�kl + �ik� jl + �il� jk

d�d + 2�
, �27�

which imply

k

2 →

2k2

d
, �k · q�2 →

k2q2

d
,

FIG. 1. Feynman rules for the action �18�.

FIG. 2. One-loop diagrams for the two-point 1PI functions −��p

and −�pp at zero frequency.
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�k · q�2k

2 →

4k4q2

d�d + 2�
, �k · q�4 →

3k4q4

d�d + 2�
, �28�

the value of the diagram to O�q4� becomes

− �1
�p = − igq4�

0

� dk

�2��d

2�d/2kd−1

�� 1
2d� k2 �6 + d�g� + dk2

4d�d + 2��g� + k2�3

= − igq4 6 − d

�2 + d�24+d�� 1
2d�sin� 1

2�d�� �

g�
�1−d/2

. �29�

For d=2−� with �→0, we find

+ �1
�p = igq4� 1

32��
−

ln�g�/4�� + �E − 1

64�
+ O���� ,

�30�

where �E is the Euler constant. The result for the other one-
loop diagram �taking into account the symmetry factor� is
very similar:

+ �1
pp = gq4� 1

32��
−

ln�g�/4�� + �E

64�
+ O���� . �31�

We have carefully obtained the O��0� terms, which will be
important in Sec. IV.

The method of minimal subtraction �21� expresses the
bare couplings g and �, of respective dimensions 1

2� and 2
− 1

2�, in terms of a renormalization scale � �dimension 1� and
dimensionless renormalized couplings ḡ and �̄ as

g = ��/2�ḡ + ḡ3a1�
−1 + O�ḡ5�� , �32�

� = �2−�/2�̄ , �33�

where the corrections �called counterterms� involve only
negative powers of �. The coefficient of the O�ḡ3� counter-
term, and the absence of any counterterms for �̄, are obtained
by requiring that ��p and �pp to O�q4� be finite at �=0 when
expressed in terms of ḡ and �̄:

��p = q2�� + i�� + iq4g−1 + g� 1

32��
+ O��0�� + O�g3��

= q2�� + i�2−�/2�̄� + iq4�−�/2ḡ−1 + ḡ� 1

32��
−

a1

�

+ O��0�� + O�ḡ3�� , �34�

�pp = q4�−�/2ḡ−1 + ḡ� 1

32��
−

a1

�
+ O��0�� + O�ḡ3�� .

�35�

Hence

a1 =
1

32�
, �36�

and no counterterms of any order are needed for �̄ because
the q2 term of ��p is not renormalized.

As for the three-point 1PI function −���p, we will see in
Sec. III A that it is related by Galilean invariance to the q2�
term of ��p. Because the latter term is not renormalized, we
have

− ���p = − �0
��p = i�k1

2 − k2
2�k1 � k2, �37�

up to irrelevant terms with more factors of wave vector. We
have thus rendered the theory finite at one loop by renormal-
izing only the coupling ḡ, without the need for counterterms
to rescale the fields � and p or the time t. Crucial for this was
the equality of the 1/32�� terms in Eqs. �30� and �31�. We
conclude that the anomalous dimensions are zero at one
loop, and in Sec. III B we will show that in minimal subtrac-
tion they are exactly zero,

�� = �p = �t = 0. �38�

In a different renormalization scheme, or with a different
definition of the fields and the time such as Eq. �14�, the
anomalous dimensions would not vanish identically, but at
any RG fixed point their values are universal �2� and so they
would be zero there.

The � functions for the dimensionless couplings are de-
termined by the RG invariance of the bare couplings,

�� �

��
+ ��ḡ�

�

� ḡ
+ ���̄�

�

� �̄
��g

�
� = 0. �39�

We obtain

��ḡ� = −
1

2
�ḡ +

ḡ3

32�
+ O�ḡ5� , �40�

���̄� = �− 2 +
1

2
���̄ . �41�

The force correlation adopted by FNS �12� differs from Eq.
�10� by a factor of 2, and consequently the dimensionless

coupling of FNS is �̄=2−1/2ḡ. Thus we have confirmed the
FNS result

���̄� = − 1
2��̄ +

�̄3

16�
+ O��̄5� . �42�

III. GENERAL PROPERTIES

A. Galilean invariance

In two dimensions, the equation of motion �4� and thus
the action �18� have the important physical property of in-
variance under a Galilean transformation to a reference
frame moving with constant velocity u �12,13,20�. This
property depends on the assumption that the stirring force is
uncorrelated in time, since otherwise there would exist a link
between a point in space at one time and a “corresponding”
point in space at a different time. Specifically, the action �18�
is invariant under the transformation

��t,x� → ��t,x + ut� + �ijxiuj ,

FIELD THEORY OF THE INVERSE CASCADE IN TWO- … PHYSICAL REVIEW E 72, 056316 �2005�

056316-5



p�t,x� → p�t,x + ut� , �43�

which induces the familiar transformation of the velocity,

v�t,x� → v�t,x + ut� − u . �44�

The original Navier-Stokes equation �1� is not Galilean in-
variant because of the friction term, which introduces a pre-
ferred state of rest; but the differentiation in deriving the
stream-function equation �4� eliminates the constant shift in
v �10�.

We would not expect Galilean invariance in d=2 to be
preserved by our renormalization method unless the theory
remains Galilean invariant when dimensionally regulated.
We now show that our formal stream-function representation
in arbitrary d is invariant under the transformation �43�, pro-
vided that u lies in the physical subspace. For convenience
we use the infinitesimal form

�� = tui�i� + �ijxiuj, �p = tui�ip . �45�

In the corresponding variation of the action �18�, terms pro-
portional to t vanish automatically because they correspond
to a simple spatial translation. The interesting terms are those

where the t is differentiated �−ip�2�̇� and where � is varied
by �ijxiuj. Neither of these affects the forcing, viscous, or
friction terms, which contain � only as �2� and are trivially
invariant. We are left with

�S = −� dt ddx�ipui�i�
2� + i�ij�i�kp� jlul�k�

+ i�ij�i�kp� j��klul� . �46�

Upon integration by parts and use of 	ilul=ui, the first two
terms cancel and the third vanishes.

In Fourier space, the transformation �45� becomes

����,k� = u · k
�

��
���,k� − i�2��d+1����u � ���k� ,

�p��,k� = u · k
�

��
p��,k� . �47�

The action is Galilean invariant by virtue of the relation

u · k
�

��
�0
�p��,k� = iu � ���0

��p��,k;0,k��k�=0; �48�

both sides equal u ·kk2. The same relation must then hold
between the exact 1PI functions: The coefficient of k2� in
��p equals the coefficient of −i�k1

2−k2
2�k1�k2 in ���p. Since

the former is not renormalized, neither is the latter.

B. Fluctuation-dissipation theorem

For zero friction �=0, the action �18� is equivalent to
model A of FNS �12�, who note that it obeys detailed balance
and thus is subject to a classical fluctuation-dissipation theo-
rem �FDT� �22�. A complicated diagrammatic argument dem-
onstrates that the FDT is preserved to all orders of renormal-
ization �22�. Here we reach this conclusion by obtaining the
FDT from an exact symmetry of the action in arbitrary d.
Under the formal discrete transformation

p → p − 2i� , �49�

the action with �=0 changes only by reversing the sign of
the viscous term. The change in the interaction term vanishes
upon integration by parts, just as in deriving conservation of
energy. To restore the sign of the viscous term, we further
perform a complete time reversal,

t → − t, � → − � , �50�

which naturally reverses the sign of the dissipation. The net
effect is the transformation

p�t� → p�− t� + 2i��− t�, ��t� → − ��− t� , �51�

a generalized time reversal that is its own inverse and leaves
the action invariant.

The FDT is derived from this symmetry by expressing the
invariance of �p��:

�p�� = − ��p� − 2i���� . �52�

By invariance under time translations and spatial rotations,
negating the times in a two-point correlation function is
equivalent to interchanging the points. As a first application
of the FDT, we make use of the theorem that the equal-time
correlation function �p��== ��p�= is exact at tree level �20�.
Thus, for �=0, the exact equal-time stream-function correla-
tion is

����= =
1

2
i��p��= + ��p�=� =

1

2
i�

−�

� d�

2�
��p��0 + ��p�0�

=
1

2
i�

−�

� d�

2�

− 2ig−1

�2 + g−2k4 =
1

2k2 . �53�

The energy spectrum, in the units implied by Eq. �17�, is then

E�k� =
�k

�2��2k2����= =
k

8�
. �54�

This is an equipartition spectrum, in agreement with FNS
model A �12�.

For �=0, the FDT �52� also implies that, if �p�� and thus
��p� are made finite by renormalizing ḡ, then ���� is like-
wise finite, without the need for field or time rescalings. As
we have seen, the three-point 1PI function is automatically
finite. Hence the anomalous dimensions vanish exactly for
�=0. But in minimal subtraction, the counterterms for
rescalings and for dimensionless couplings are independent
of the mass parameter �21�. We conclude that in minimal
subtraction, even with friction,

�� = �p = �t = 0, �55�

and ��ḡ� depends only on ḡ. Indeed, we have seen these
statements verified to one loop in Sec. II D.

C. Renormalization-group flows

We have shown that the anomalous dimensions vanish,
and that the renormalized couplings in exactly two dimen-
sions obey
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�
dḡ

d�
� ��ḡ� =

ḡ3

32�
+ O�ḡ5� , �56�

�̄ = �−2� . �57�

Thus �̄ is very simply related to � and can be used to pa-
rametrize it. In the RG flow to low wave numbers, �̄ steadily
increases as friction becomes more important. Meanwhile, ḡ
flows in its own characteristic way regardless of the value of
�̄; the most we can say is that once ḡ becomes small, it
decreases further and further, approaching zero in the IR
limit. The solution of Eq. �56� in this limit is

ḡ��� =� 16�

ln�kg/��
��� kg� , �58�

where kg is the scale at which ḡ becomes large.
In the IR limit, we expect good accuracy from perturba-

tive results such as the tree-level expression for the energy
spectrum,

E�k� =
�k

�2��2k2����= =
k3

8��g� + k2�
. �59�

We might suppose that the true asymptotic behavior is given
by replacing g with the renormalized coupling ḡ�k�. This
would follow from RG theory if the loop corrections to Eq.
�59� contained ln�k2�. But with g� providing an IR cutoff, the
diagrams are regular as k→0 and instead contain ln�g��.
Hence, for the purposes of correlation functions, the RG flow
effectively halts for wave numbers below the “mass” �g�. If
m is the suitably renormalized value of this mass, then as k
→0 we expect that

E�k� =
k3

8��ḡ�m�
. �60�

On the other hand, in the bare tree-level result �59�, g can be
interpreted as a coupling renormalized at a very high wave
number �the forcing scale or UV cutoff�. With ��ḡ��0, we
have ḡ�m��g, and so the RG result �60� gives a greater E�k�
at low k. Whereas the bare tree-level calculation ignores all
interactions between scales, the effect of renormalization is
to place more energy and dissipation at low k �and therefore
less at high k�, consistent with the inverse cascade.

From Eq. �57�, any RG fixed point �ḡ� , �̄�� must have �̄�

=0. Not only do the anomalous dimensions vanish at any
fixed point, but for �̄=0 we have the exact equipartition
spectrum E�k�k1, whether ḡ is at a fixed point or not. It is
clear that, despite the suggestive evidence of scale invariance
of the inverse cascade, an RG fixed point in our framework
cannot be the explanation for the observed k−5/3 spectrum.
Nevertheless, our theory contains all the essential ingredients
that have produced the stationary inverse cascade experimen-
tally and numerically. A natural explanation is that the k−5/3

spectrum arises from the nonperturbative behavior of corre-
lation functions at �̄�0 and at large values of ḡ that flow
rapidly with scale. Although it is far from obvious how such
an RG flow can produce approximate scale invariance with
an effective anomalous dimension, we are motivated to seek

hints about the theory’s strong-coupling behavior. The first
step, which can be useful for more mundane purposes as
well, is to extend the renormalization to the next order of
perturbation theory.

IV. TWO-LOOP RENORMALIZATION

A. Renormalization prescription and diagrams

Calculating ��ḡ� consistently to two loops requires a pre-
cise specification of the renormalization scheme. Remark-
ably, though, as long as ��ḡ� depends only on ḡ, the � func-
tion to two loops �but no further� is independent of the
particular scheme chosen �2�. As in Sec. II D, we take �
�0, compute two-point 1PI diagrams to O�q4� expanded
about �=0, and renormalize by minimal subtraction. The
two-loop expression for the bare coupling in terms of the
renormalized coupling is

g = ��/2�ḡ + ḡ3a1�
−1 + ḡ5�a2�

−2 + a2��
−1� + O�ḡ7�� . �61�

With zero anomalous dimensions, ��ḡ� is the only RG func-
tion to be determined and we need only compute a single 1PI
function to two loops. Below we will choose −�pp because
its two-loop diagrams are technically simpler than those of
−��p.

We have seen that g�, which has dimension 2 independent
of �, acts as the IR cutoff for wave-vector integrals. By di-
mensional analysis, �pp to O�q4� has the form

�pp = q4g−1 + g�g��−�/2�b1

�
+ b�1 + O����

+ g3�g��−��b2

�2 +
b�2

�
+ O��0�� + O�g5��

= q4g−1 + g�b1

�
+ b�1 −

1

2
b1ln�g�� + O����

+ g3�b2

�2 +
b�2 − b2ln�g��

�
+ O��0�� + O�g5�� .

�62�

To simplify the two-loop calculations we formally set �
=g−1 and restore the ln�g�� terms at the end.

Multiloop diagrams can be characterized by their overall
UV divergence �as all loop frequencies and wave numbers go
to infinity together� and their subdivergences �as a subset of
loop frequencies and wave numbers go to infinity while the
rest remain finite�. Overlapping divergences occur when two
or more divergent subdiagrams share a propagator; this is a
definite complication in evaluating a diagram, though not
insurmountable �2�. Some two-loop diagrams for the 1PI
function −��p contain overlapping divergences, so we
choose to calculate the diagrams for −�pp, which fortunately
do not �Fig. 3�. A three-point 1PI subdiagram is divergent
only if its external lines are ��p, two wiggly and one plain;
Galilean invariance does not eliminate this subdivergence
when we treat each two-loop diagram separately, because the
finiteness of −�1

��p results from a sum over distinct one-loop
diagrams. In Fig. 3 we have omitted one conceivable dia-
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gram containing the 1PI subdiagram −�1
��, which vanishes

as noted in Sec. II C.
Previous two-loop calculations of similar complexity have

been made for different problems using diagrams of the same
topology: the Burgers-Kardar-Parisi-Zhang equation for in-
terface growth �23� and the Navier-Stokes equation in more
than two physical dimensions, where there are fewer diver-
gences �24�.

B. Analytic calculations

We have programmed MATHEMATICA �25� to automate the
steps in evaluating each two-loop diagram. The loop fre-
quencies are integrated one after the other by adding the
residues of all poles in the upper half plane. The resulting
integrand, containing the external wave vector q and the loop
wave vectors k1,2, is expanded to O�q4� and averaged over
directions of q in the physical subspace. The numerator of
the integrand is now rife with the projector 	ij, both from
averaging qiqj and from applying Eq. �7� to cross products.
To eliminate 	ij, we average the integrand over orientations
of the physical subspace within d-dimensional space: We in-

troduce an orthonormal physical basis, write 	ij = âiâj + b̂ib̂j,
average over directions of â in the d−1 dimensions perpen-

dicular to b̂, and then average over directions of b̂ in
d-dimensional space. The result is a function of k1

2, k2
2, and

k1 ·k2 to be integrated over ddk1ddk2.
Because we need only the divergent parts of the two-loop

diagrams as indicated in Eq. �62�, we eliminate numerator
terms that produce neither an overall divergence nor a sub-
divergence by power counting. We seek to integrate first over
the loop wave vector �say k1� associated with the subdiver-
gence �if any�. To simplify the denominator, Feynman pa-
rameters �2� are introduced, and k1 is translated by a multiple
of k2. After the numerator is isotropized, the k1 integration is
done analytically; there remains an integral over Feynman
parameters and over the magnitude k2. From Eq. �62�, the
integrand �excluding g3q4� has dimension −1−2�. The part
that behaves like k2

−1−2� as k2→� is subtracted and sepa-
rately integrated over k2, producing another �−1 factor; all the
�−2 terms arise here and are found analytically, but the �−1

terms involve intractable Feynman-parameter integrals.

Meanwhile, the remaining subtracted integral converges at
k2=� but contains analytically integrable �−1 poles from the
k1 integration.

Adding the divergent parts of the eight diagrams gives

�2
pp = g3q4�−

1

2048�2�2 +
− 2 ln�4�� + 2�E + 5 + X

4096�2�

+ O��0�� . �63�

Here X is a sum of Feynman-parameter integrals of compli-
cated rational functions with integer coefficients; thus we
expect that X may be a rational number. Though we are
unable to calculate X analytically, Eq. �63� already displays
some important features: If the �−2 term were different, the
renormalization performed below would become inconsistent
�21�; and if the coefficients of �E and ln�4�� were different,
these constants would �contrary to expectation� appear in the
two-loop � function.

C. Numerical calculations

We have evaluated X numerically by multidimensional
Monte Carlo integration, using the technique of importance
sampling �26� to select more points in the “corners” of
Feynman-parameter space �with one parameter near 1 and
the others near 0�. This technique improves the statistics be-
cause the integrands tend to diverge in these corners �but
slowly enough that the integrals converge�. We treat the in-
tegrals that make up X separately, since they vary in com-
plexity and in number of Feynman parameters. To optimize
the precision of the result for X in a given computation time
T, we reason as follows. The contribution to X from diagram
i, evaluated with ni sample points, is obtained with a preci-
sion si=�ini

−1/2 in a time ti=�ini, where �i and �i are charac-
teristics of the integrand and the computer. Constrained op-
timization shows that we achieve the best overall precision

S2 = �
i

si
2 �64�

in the time

T = �
i

ti �65�

by choosing

ni =
T�i

�i
1/2�

j

� j� j
1/2

. �66�

Short runs are made to estimate �i and �i, and then the high-
precision integrations are performed with this plan. Our com-
putations for a total of 3.6�108 sample points yield

X = − 3.995 ± 0.005, �67�

strongly suggesting that the exact value is

X = − 4. �68�

With the one-loop result �31� and the two-loop result �63�,
we have

FIG. 3. Nonvanishing two-loop diagrams for the two-point 1PI
function −�pp. Along with the overall divergence, each diagram has
at most one divergent subdiagram �bold lines�.
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�pp = q4g−1 + g� 1

32��
−

ln�g�/4�� + �E

64�
+ O����

+ g3�−
1

2048�2�2 +
2 ln�g�/4�� + 2�E + 1

4096�2�

+ O��0�� + O�g5�� . �69�

By substituting Eq. �61� and requiring a finite expression at
�=0, we determine

a1 =
1

32�
, a2 =

3

2048�2 , a�2 = −
1

4096�2 . �70�

The RG invariance of the bare coupling g finally gives

��ḡ� = −
1

2
�ḡ +

ḡ3

32�
−

ḡ5

2048�2 + O�ḡ7� . �71�

This is reminiscent of the � function in four-dimensional �4

theory, where similarly the one-loop term is positive and the
two-loop term is negative �2�. A positive � function that
grows too quickly �faster than linearly� at large coupling
raises the question of whether the coupling becomes infinite
at a large but finite renormalization scale. In our theory this
would suggest an absolute limit on the extent of the scaling
range for any inverse cascade. To avoid such a fate, the ex-
pansion of the � function must contain many negative terms
to slow its initial superlinear growth. It is pleasing to find
such a term already at two loops.

V. INVERSE-CASCADE RANGE

A. Inverse-cascade phenomenology

The initial prediction of the two-dimensional inverse en-
ergy cascade �1� assumed zero friction and small but nonzero
viscosity. Kinetic energy, continually injected at high wave
numbers, is expected to cascade down through a quasisteady
inertial range extending to lower and lower wave numbers as
time passes. Within this range, the assumption of scale in-
variance implies the energy spectrum

E�k� = CE2/3k−5/3, �72�

where C is the two-dimensional Kolmogorov constant and E
is the rate of energy injection per unit mass. Numerical simu-
lations with zero friction �4,5,27� confirm this spectrum until
the cascade approaches the minimum wave number associ-
ated with a finite system. Both nonstationary behavior and
finite-size effects, however, lie outside our theoretical frame-
work, which treats a fluid of infinite size that has been stirred
for an infinite time. In the absence of friction, such a fluid
has an equipartition spectrum as shown in Sec. III B.

When friction is introduced, it is natural to expect a mir-
ror image of the viscous energy dissipation at high wave
numbers in the three-dimensional direct cascade: A station-
ary inverse cascade should develop, with dissipation by fric-
tion at low wave numbers k�kfr and with the spectrum �72�
at wave numbers k�kfr where dissipation is unimportant.
Dimensional analysis gives

kfr = E−1/2�3/2, �73�

where � is the friction coefficient �8,28�. Several numerical
simulations �5,8� and laboratory experiments �9,29� confirm
this picture. Other numerical studies obtain similar results
but are more difficult to relate to our framework, since they
modify the friction term by removing derivatives �7� or by
applying friction only below a cutoff wave number �30�. We
are less concerned about the common practice of adding de-
rivatives to the viscous term �hyperviscosity�, because such a
modified term is irrelevant and the RG flow should introduce
a normal viscous term to replace it. But friction modified
with inverse derivatives �hypofriction� is certainly relevant
and is believed to alter the dynamics of the inverse cascade
�5,8�. In an extreme case, hypofriction with eight inverse
Laplacians destroys the k−5/3 spectrum �31�. Hypofriction is
intended to confine dissipation explicitly to low wave num-
bers; ordinary linear friction accomplishes the same thing
more gently, but makes it difficult in practice to achieve an
inertial range �28�. We have used linear friction because it is
physically realistic and leads to a local field theory.

For convenience in relating the observed inverse cascade
to our field theory with the action �18�, we adopt units of
time in which

g� � D0
1/2�−1/2 = 1, �74�

so that the rescalings in Eq. �17� are trivial. Then the kine-
matic viscosity is

� = g−1, �75�

the friction coefficient is

� = � , �76�

and the force correlation is

D�k2� = g−1k2. �77�

In contrast to the formal methods of dimensional regular-
ization and minimal subtraction, a simple UV cutoff renders
our theory finite in a physically meaningful way while still
preserving the symmetries noted in Sec. III. A cutoff would
have been inconvenient for the two-loop calculations of Sec.
IV, but it is appropriate for understanding experimental and
numerical results on the inverse cascade. The local, renor-
malizable action �18� applies only with a UV cutoff � below
the wave numbers of the external forcing �12�. A correspond-
ing renormalization prescription is obtained by staying in
exactly two spatial dimensions and writing the coupling g in
Eq. �18� as a cutoff-dependent quantity ĝ���, such that the
long-distance behavior is independent of �. No cutoff depen-
dence is needed for �, because the friction term is not renor-
malized, as we saw in Sec. II D.

Special properties of minimal subtraction allowed us to
conclude �Sec. III B� that in that scheme the anomalous di-
mensions vanish and ��ḡ� depends only on ḡ. We may ex-
pect that in the cutoff scheme these statements remain ap-
proximately true, at least for small values of the
dimensionless friction parameter �−2�. Because the � func-
tion is scheme independent through two loops �2�, we have
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�
dĝ

d�
� ��ĝ� =

ĝ3

32�
−

ĝ5

2048�2 + O�ĝ7� . �78�

This result is directly useful for weak coupling, but can only
hint at the possible strong-coupling behavior. We will now
show that a specific strong-coupling form of the � function is
required for a fully developed inverse cascade, and that it can
be naturally interpolated with the two-loop result �78�.

B. Strong-coupling behavior

The key condition for the ideal inverse cascade is that the
dissipation of energy is dominated by friction and is almost
totally confined to low wave numbers. This means that the
dissipation rate

E = 2��
0

�

dk E�k� = 2��
0

�

dk
�k

�2��2k2����= �79�

should be independent of the UV cutoff �, because a change
in � produces neither a renormalization of � nor a rescaling
of �. Under stationary conditions, E equals the rate of energy
injection, given by �14�

E = �
0

�

dk
�k

�2��2D�k2� =
�4

16�ĝ���
, �80�

in terms of the force correlation �77�. For E to be indepen-
dent of �, we must have the strong-coupling behavior

ĝ��� � const ��4, �81�

corresponding to the asymptotically linear � function

��ĝ� � 4ĝ �ĝ → �� . �82�

We now attempt to connect this form with the two-loop �
function �78�.

Perturbative expansions such as Eq. �78� are usually di-
vergent, but a Borel transformation is expected to produce a
finite radius of convergence about zero coupling �2�. We see
that the true expansion parameter is ĝ2, and the alternatively
normalized action �15� makes it clear that the theory is un-
stable for ĝ2�0. Thus we write

��ĝ�
ĝ

� A�ĝ2� = �
0

� dz

ĝ2 B�z�exp
− z

ĝ2 . �83�

For the perturbation series

A�ĝ2� = �
n=1

�

Anĝ2n, �84�

the Borel transform is

B�z� = �
n=1

�
An

n!
zn. �85�

In our case,

B�z� =
z

32�
−

z2

4096�2 + O�z3� . �86�

The Borel transform often has poles on the negative real
axis associated with instantons �2�, but ��ĝ� is well defined
from Eq. �83� as long as B�z� is regular on the positive real
axis. A simple and suitable rational �Padé� approximant to
B�z� is

B�z� �
z

32� + yz
�y � 0�; �87�

fortunately, the choice y= 1
4 agrees with Eq. �86�. We thus

take

B�z� �
4z

128� + z
, �88�

but we do not here attempt to study the possible instanton
solutions corresponding to the pole at z=−128�. Equation
�83� then gives precisely the desired asymptotic behavior

��ĝ� � 4ĝ �ĝ → �� . �89�

We now ask whether the observed k−5/3 energy spectrum
�72� is consistent with our theory, although we are unable to
derive it systematically. We conjecture that strong-coupling
effects produce the spectrum

E�k� � E2/3k−5/3 �90�

for

k � kfr = E−1/2�3/2. �91�

From Eq. �80�, the running coupling is

ĝ��� � E−1�4. �92�

For nonperturbative effects to be operative down to the wave
number kfr, we must have

ĝ�kfr� � �E−1�2�3 � 1. �93�

In the borderline case where ĝ�kfr��1, we have kfr�E1/4

��1/2, and we can match Eq. �90� in order of magnitude with
the perturbative energy spectrum �59�:

E�kfr� � E2/3kfr
−5/3 � E1/4 �

kfr
3

� + kfr
2 . �94�

Even when ĝ�kfr��1, we may guess from Eq. �59� that in
order of magnitude

E�kfr� �
kfr

3

�ĝ�kfr� + kfr
2 � E3/2�−5/2, �95�

and this again matches Eq. �90� at kfr.
In the case ĝ�kfr��1, the running coupling eventually be-

comes �1 at a lower wave number

kg � E1/4, �96�

below which perturbation theory is applicable and the energy
spectrum is given roughly by Eq. �60�. Thus we envision a
varied but continuous behavior of the energy spectrum in the
different regions:
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E�k� � ��
−1k3 �k � E1/4� ,

E�−1k−1 �E1/4 � k � E−1/2�3/2� ,

E2/3k−5/3 �k � E−1/2�3/2� .
� �97�

As a further check, we note that the contribution to the en-
ergy dissipation rate �79� for each of the three regions is �E
�up to a logarithmic factor for the middle region�. This sug-
gests that a fully developed stationary inverse cascade has
several distinct dissipation ranges. Testing by experiments
and simulations is not straightforward, because finite-size ef-
fects may become important before the lower-wave-number
ranges are reached.

C. Energy flux and third moment

We have described the ideal inverse cascade in terms of
external forcing confined to high wave numbers �assumed in
Sec. II B� and energy dissipation practically confined to low
wave numbers �made plausible in Secs. III C and V B�. This
separation is equivalent to the conventional criterion of an
inertial range with a constant energy flux. However, unlike
the energy spectrum �a simple correlation function�, the en-
ergy flux in wave-number space is not invariant under the
RG flow and is not given straightforwardly by our local field
theory. Renormalization introduces the forcing �77�, which is
nonzero even for wave numbers in the inertial range and so
makes the flux appear nonconstant. This effective forcing
simply represents the energy transfer from wave numbers k
�� that have been integrated out.

We can resolve the flux problem by working instead in
physical space, where the effective forcing is a differentiated
delta function that is zero at finite distances, including the
inertial range of lengths. Thus we inquire whether the
physical-space energy flux �3�

 �r� = −
1

4
�r · �	�v�r�	2�v�r�� �98�

is preserved under renormalization. The flux is given in
terms of the third moment of the velocity increment

�v�r� = v�x + r� − v�x� �99�

and is independent of x by homogeneity. Under stationary
conditions, the Navier-Stokes equation �1� yields �32�

 �r� = ���r
2 − ���v�x� · v�x + r�� +

1

2
Ĉ�r�

= �ĝ���−1�r
2 − ���v�x� · v�x + r�� , �100�

where Ĉ�r� is the vanishing physical-space force correlation,
and we have used Eqs. �75� and �76�.

The right-hand side of Eq. �100� can be interpreted as
minus the rate of energy dissipation at length scales larger
than r. Since �v�x� ·v�x+r�� is an RG-invariant correlation
function, only the viscosity ĝ���−1 introduces cutoff depen-
dence. In accordance with our argument in Sec. V B, as long
as the energy dissipation is dominated by friction, the dissi-
pation rate is independent of �, giving a well-defined energy
flux

 �r� = − ��v�x� · v�x + r�� �101�

proportional to the Fourier transform of the energy spectrum.
And if this spectrum is almost entirely concentrated at low
wave numbers k�kfr, it follows that in the inertial range �r
�kfr

−1� the flux is constant,

 �r� �  �0� = − ��v2� = − E . �102�

D. Intermittency

A striking feature observed in the inverse cascade is the
approximate scale invariance of inertial-range velocity corre-
lations �structure functions�. The k−5/3 energy spectrum �72�
gives for the second moment �3�

�	�v�r�	2�  E2/3r2/3, �103�

and the constant energy flux �98� gives for the third moment
�32�

�	�v�r�	2�v�r��  Er . �104�

In our field theory, since the anomalous dimensions vanish,
such moments can be written in the form

���v�n� = r−nfn„ĝ�r−1�,�r2
… , �105�

where r−n is the kinematic scaling and fn is a function of the
dimensionless running couplings. Equation �105� should re-
duce to the observed forms in the inertial range

r � kfr
−1 = E1/2�−3/2, �106�

subject to the condition for a fully developed cascade,

ĝ�kfr� � �E−1�2�3 � 1. �107�

Conditions �106� and �107� are equivalent to

��r2�−2 � ĝ�r−1� � ��r2�−3. �108�

To achieve complete scale invariance of inertial-range
structure functions �absence of intermittency�, we must have

fn„ĝ�r−1�,�r2
…  ĝ�r−1�−n/3 �109�

for the range of arguments �108�; then fnEn/3r4n/3, and

���v�n�  En/3rn/3. �110�

Equation �109� requires a specific nonperturbative behavior
of velocity correlations at strong coupling, mimicking the
effect of an anomalous dimension. RG theory alone does not
constrain the functions fn. The well-established second mo-
ment �103� and third moment �104� strongly suggest that an
exact calculation in our theory would yield the required be-
havior of f2 and f3. But in the absence of a field-theoretic
reason why Eq. �109� should persist for n�4, high-order
structure functions may generically be expected to violate
scale invariance and produce intermittency. In sum, we
would not be at all surprised by observations of intermittency
in the inverse cascade, but a seeming total absence of inter-
mittency would raise questions about unknown properties of
our theory that enforce effective scale invariance.
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Some numerical studies of higher moments �4,5� deal
with a nonstationary inverse cascade and find no signs of
intermittency. Such results are not directly relevant to this
paper but have been explained theoretically �6� based on the
growth of the inertial range with time. For the stationary
inverse cascade, laboratory experiments �9,33� reveal no evi-
dence of intermittency. The results of stationary numerical
simulations, however, are mixed: A study using linear fric-
tion �8� confirms the absence of intermittency, but a study
using hypofriction with one inverse Laplacian �7� obtains
intermittency that is described as strong and as similar to that
observed in the three-dimensional direct cascade. Surpris-
ingly, results from the latter simulation are also presented in
a subsequent paper �33� where the intermittency is described
as insignificant. The evidence on intermittency in the station-
ary inverse cascade is unclear, and further numerical studies
would be useful to resolve the question. Results exhibiting
strong intermittency are most natural, from the viewpoint of
our field theory.

The mild hypofriction used in the numerical study obtain-
ing strong intermittency �7� is unlikely to alter the qualitative
structure of our theory. While the inverse Laplacian renders
the initial Navier-Stokes equation �1� nonlocal, the differen-
tiated form �4� and the field-theory action �18� are still local
in terms of the stream function �. The hypofriction term
certainly violates Galilean invariance, but this symmetry
holds for zero hypofriction and so its implications for the RG
functions persist in minimal subtraction even when hypofric-
tion is added. The same arguments used for linear friction in
this paper suggest that intermittency should be expected with
hypofriction as well. It would be interesting to perform a
direct numerical study of the effect of modified friction on
intermittency in the stationary inverse cascade.

VI. GENERALIZED BURGERS EQUATION

A. Dimensional continuation

As an example of an alternative statistical fluid model to
which our RG methods can be applied but which exhibits
different behavior, let us briefly consider the one-
dimensional Burgers equation �34�

v̇ + v � v − ��2v + �v = f . �111�

Here v is the velocity field of a fluid without pressure, f is
the force per unit mass, � is the kinematic viscosity, and � is
the friction coefficient �not normally included in the Burgers
equation but useful in controlling the long-distance behav-
ior�. As with the two-dimensional incompressible fluid, we
assume that the forcing is confined to a band of high wave
numbers, and we study the response at lower wave numbers.

FNS �12� found that the UV-stirred Burgers equation, like
the Navier-Stokes equation, has a dimensionless coupling in
two spatial dimensions and can be analyzed by an � expan-
sion in d=2−�. But their continuation of the Burgers equa-
tion to d�1 does not preserve important one-dimensional
properties, and their � expansion is not fully consistent
�12,34�. With �=�= f =0, Eq. �111� yields conservation of
the “energy”

E =
1

2
� dx v2. �112�

This E is not proportional to the physical energy of a
pressure-free fluid, because it does not account for the vary-
ing density; nevertheless, E is conserved in d=1, and leads to
a fluctuation-dissipation theorem �FDT�. It is not easy, how-
ever, to generalize Eq. �111� to d�1 so that a similar “en-
ergy” is conserved, while maintaining other key properties
such as Galilean invariance. This is the task we now address.

If we neglect dissipation and forcing, the conservation of
E in d=1 follows from the relation

0 = vv̇ +
1

3
� �v3� � v�v̇ + v � v� . �113�

The analog in d�1 that would yield conservation of

E =
1

2
� ddx	v	2 �114�

is

0 = v · v̇ + A � · �v2v�

� v · �v̇ + A�� · v�v + �A − B� � �v2� + 2B�v · ��v�

� v · w . �115�

Unfortunately, whatever the choice of the constants A and B,
the quantity w is not Galilean covariant and is not a suitable
generalization of �v̇+v�v�.

To remedy this problem, we impose the potential-flow
condition

v = �� , �116�

as is commonplace when considering a multidimensional
Burgers equation. Then, because

Ė =� ddx v · w =� ddx ��− � · w� , �117�

a scalar equation of motion can conserve

E =
1

2
� ddx �i��i� . �118�

We take

0 = − � · w � − �2�̇ − A�2��2� − 2A�i� j��i� j�

− 3A�i��i�
2� . �119�

If A= 1
3 , this expression is covariant under the Galilean trans-

formation

��t,x� → ��t,x + ut� − u · x , �120�

which induces

v�t,x� → v�t,x + ut� − u . �121�

Upon restoring dissipation and forcing, we therefore pro-
pose
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− �2�̇ − �i��i�
2� −

1

3
�2��2� −

2

3
�i� j��i� j� + ��4�

− ��2� = � �122�

as a fully satisfactory multidimensional Burgers equation
that reduces to Eq. �111� in d=1. Equation �122� is formally
very similar to the incompressible stream-function equation
�4�, and we will follow our previous analysis closely.

B. One-loop renormalization

As in Sec. II, we assume Gaussian forcing and introduce a
path integral with the action

S =� dt ddx1

2
�− �2p�D�− �2�p + ip�− �2�̇ − �i��i�

2�

−
1

3
�2��2� −

2

3
�i� j��i� j� + ��4� − ��2���

=� dtddx1

2
�− �2p�D�− �2�p + i�p�4� − i�p�2�

− ip�2�̇ − i�i� jp�1

6
�ij�k��k� +

1

3
�i�� j��� , �123�

where we have again integrated the p�� term by parts.
Analysis of dimensions in d=2−� proceeds as before, since
all terms contain the same numbers of derivatives as for the
incompressible fluid. The final Burgers action, to be com-
pared with Eq. �18�, is

S =� dt ddx1

2
g−1�2p�2p + ig−1p�4� − i�p�2� − ip�2�̇

− i�i� jp�1

6
�ij�k��k� +

1

3
�i�� j��� . �124�

The scaling dimensions are again given by Eq. �20�.
The only change to the Feynman rules in Fig. 1 is the

vertex factor, which now becomes

− �0
��p =

1

3
i	k1 + k2	2k1 · k2 +

2

3
i�k1

2 + k1 · k2��k2
2 + k1 · k2� .

�125�

Thanks to conservation of the “energy” E, the FDT is ob-
tained just as in Sec. III B, and together with Galilean invari-
ance it implies that the anomalous dimensions vanish. Thus
to find the new one-loop � function, we need only recompute
one of the diagrams in Fig. 2. We calculate

�1
�p = igq4� 1

32��
−

ln�g�/4�� + �E + 8
9

64�
+ O���� ,

�126�

to be compared with Eq. �30�. Curiously, the O��−1� term is
exactly the same and again leads to the one-loop � function

��ḡ� = −
1

2
�ḡ +

ḡ3

32�
+ O�ḡ5� . �127�

But the O��0� term in Eq. �126�, which would enter a calcu-
lation of the two-loop � function, differs from Eq. �30�, and
we have no reason to expect an identity between the � func-
tions beyond one loop.

Our multidimensional Burgers equation �122� appears not
to have been investigated previously, and it is possible that
numerical simulations in two or three dimensions could re-
veal interesting and unexpected behavior. The focus here,
however, is on the extrapolation to one dimension ��=1�,
where we seek to explain the known behavior �34� of the
ordinary Burgers equation �111�. If � is positive and small,
then the � function �127� has a nontrivial IR-stable fixed
point at

ḡ�
2 = 16�� + O��2� . �128�

By contrast, when a simpler continuation of the Burgers
equation was used, the fixed point appeared to be IR-
unstable near two dimensions �12,34�. From our results it is
natural to expect an IR-stable strong-coupling fixed point in
one dimension ��=1�.

C. Comparison with inverse-cascade model

Due to the nontrivial fixed point, the response of the one-
dimensional Burgers equation to UV forcing is different
from that of the two-dimensional Navier-Stokes equation—
even in the absence of friction. At wave numbers low enough
that the fixed point is reached, Burgers correlation functions
�at equal or unequal times� exhibit purely kinematic scaling,
since all anomalous dimensions vanish. For example, from
Eq. �20�, the scaling of time and frequency is given by

dt = − 2 +
1

2
� = −

3

2
, �  k3/2. �129�

Meanwhile, in both models, the FDT implies that the energy
spectrum �an equal-time correlation function� obeys equipar-
tition. These conclusions agree with previous analytic �12�
and numerical �34� studies of the frictionless one-
dimensional Burgers equation.

We have argued that the inclusion of friction dramatically
alters the behavior of the two-dimensional Navier-Stokes
model, from equipartition to a stationary inverse cascade.
This is plausible only in the presence of a large, rapidly
flowing coupling ĝ. We noted in Sec. V how this RG flow
could give rise to a constant energy flux and a k−5/3 spectrum.
No such profound effect is expected for friction in the one-
dimensional Burgers equation. Correlation functions will be
modified at very low wave numbers ��2/3, but as long as ĝ
remains close to the fixed point, higher wave numbers will
retain the equipartition spectrum.

An open question concerns the strong-coupling behavior
of our generalized Burgers equation �122� in two dimensions
with friction. If the � function happens to grow asymptoti-
cally in the same way as the Navier-Stokes one, then the
arguments of Sec. V can be repeated and it is at least possible
that this Burgers model could exhibit an inverse energy cas-
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cade. If true, this should also be evident if the equation is
studied numerically. It is unclear, however, whether this mul-
tidimensional Galilean-invariant scalar field theory has a di-
rect physical application.

VII. DISCUSSION

We have presented a statistical field theory capable of
describing the stationary inverse energy cascade in two-
dimensional incompressible turbulence, and computed the
RG functions through two loops. By contrast with previous
RG studies of turbulence, we have taken advantage of the
nature of the inverse cascade, with external forcing confined
to high wave numbers, to work with a conventional local
field theory. The consequences of Galilean invariance and
the fluctuation-dissipation theorem have been systematically
derived based on the underlying symmetries of the action.
After taking these symmetries into account, we have evalu-
ated the necessary two-loop diagrams in dimensional regu-
larization to obtain the two-loop � function

��ḡ� =
ḡ3

32�
−

ḡ5

2048�2 + O�ḡ7� , �130�

which is independent of the renormalization scheme to pre-
cisely this order.

Because the anomalous dimensions vanish identically in
minimal subtraction, no RG fixed point can yield the ob-
served k−5/3 energy spectrum of the inverse cascade. Instead,
we have found that the inverse cascade could plausibly arise
from nonperturbative strong-coupling effects in the presence
of friction. The apparent anomalous dimension of the veloc-
ity must arise from the rapid RG flow of the coupling. Cutoff
independence of the energy dissipation rate �or constancy of
the energy flux� requires the strong-coupling behavior

��ĝ� � 4ĝ �ĝ → �� , �131�

and we have also obtained this in a heuristic way from a
Borel transformation of the two-loop � function. The ob-
served energy spectrum in the inertial range has been
matched with perturbative results at the wave numbers where
dissipation becomes important. Inertial-range intermittency
�violation of scale invariance� is generically expected be-
cause the coupling flows rapidly with scale, but the evidence
on intermittency from numerical simulations is mixed. On
the other hand, a similar RG analysis of the one-dimensional
Burgers equation confirms the simpler behavior of that
model, controlled by a strong-coupling fixed point.

Our greatest difficulty is that the inverse cascade appears
to be intrinsically a nonperturbative phenomenon. To make
quantitative predictions, such as the exponent of the energy
spectrum or the value of the Kolmogorov constant, it may be
useful to combine a high-order perturbative calculation with
an appropriate resummation method, as in our analysis of the
strong-coupling � function. Of course evaluating additional
diagrams with two or more loops will be very challenging,
especially if the finite parts are needed. At the present stage,
the most intriguing prediction of our theory is that substantial
intermittency should be expected in the stationary inverse
cascade. It would be helpful to have more robust and consis-
tent results from experiments and simulations to determine
whether this expectation is realized, and if it is not, to iden-
tify the field-theoretic explanation.

ACKNOWLEDGMENTS

I thank A. M. Polyakov, S. L. Sondhi, H. L. Verlinde, and
V. Yakhot for helpful discussions. This material is based
upon work supported by the National Science Foundation
under Grant No. 0243680. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of
the National Science Foundation.

�1� R. H. Kraichnan, Phys. Fluids 10, 1417 �1967�.
�2� J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

�Oxford University Press, Oxford, 1996�, 3rd ed.
�3� U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov �Cam-

bridge University Press, Cambridge, England, 1995�.
�4� L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 �1993�.
�5� L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 �1994�.
�6� V. Yakhot, Phys. Rev. E 60, 5544 �1999�.
�7� A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev. E 52, 3719

�1995�.
�8� G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev. E 61,

R29 �2000�.
�9� J. Paret and P. Tabeling, Phys. Fluids 10, 3126 �1998�.

�10� J. Honkonen, Phys. Rev. E 58, 4532 �1998�.
�11� A. M. Polyakov, Nucl. Phys. B 396, 367 �1993�.
�12� D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16,

732 �1977�.
�13� C. DeDominicis and P. C. Martin, Phys. Rev. A 19, 419

�1979�.

�14� L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasiliev, The
Field Theoretic Renormalization Group in Fully Developed
Turbulence �Gordon and Breach, Amsterdam, 1999�.

�15� M. Lesieur, Turbulence in Fluids �Kluwer, Boston, 1997�, 3rd
ed.

�16� G. ’t Hooft and M. Veltman, Nucl. Phys. B 44, 189 �1972�.
�17� P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8,

423 �1973�.
�18� R. Bausch, H. K. Janssen, and H. Wagner, Z. Phys. B 24, 113

�1976�.
�19� R. Phythian, J. Phys. A 10, 777 �1977�.
�20� L. D. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis’mak, Theor.

Math. Phys. 57, 1131 �1983�.
�21� G. ’t Hooft, Nucl. Phys. B 61, 455 �1973�.
�22� U. Deker and F. Haake, Phys. Rev. A 11, 2043 �1975�.
�23� E. Frey and U. C. Täuber, Phys. Rev. E 50, 1024 �1994�.
�24� L. Ts. Adzhemyan, N. V. Antonov, M. V. Kompaniets, and A.

N. Vasil’ev, Int. J. Mod. Phys. B 17, 2137 �2003�.
�25� S. Wolfram, The Mathematica Book �Cambridge University

JACKSON R. MAYO PHYSICAL REVIEW E 72, 056316 �2005�

056316-14



Press, Cambridge, England, 1999�, 4th ed.
�26� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in C: The Art of Scientific Computing
�Cambridge University Press, Cambridge, England, 1992�,
Sec. 7.8, 2nd ed.

�27� U. Frisch and P. L. Sulem, Phys. Fluids 27, 1921 �1984�.
�28� S. Danilov and D. Gurarie, Phys. Rev. E 63, 020203�R�

�2001�.

�29� J. Sommeria, J. Fluid Mech. 170, 139 �1986�.
�30� M. E. Maltrud and G. K. Vallis, J. Fluid Mech. 228, 321

�1991�.
�31� V. Borue, Phys. Rev. Lett. 72, 1475 �1994�.
�32� D. Bernard, Phys. Rev. E 60, 6184 �1999�.
�33� T. Dubos, A. Babiano, J. Paret, and P. Tabeling, Phys. Rev. E

64, 036302 �2001�.
�34� V. Yakhot and Z.-S. She, Phys. Rev. Lett. 60, 1840 �1988�.

FIELD THEORY OF THE INVERSE CASCADE IN TWO- … PHYSICAL REVIEW E 72, 056316 �2005�

056316-15


